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2.1 Introduction 

 To model the physical problems, the partial differential equations (PDEs) are the common method. PDEs 

can be used to describe a wide variety of phenomena such as sound, heat, diffusion, electrostatics, 

electrodynamics, fluid dynamics, elasticity, gravitation and quantum mechanics, etc. In this chapter, we 

will discuss about different types of the partial differential equations, their classifications and the classical 

and weak solutions, etc. 

Partial Differential Equation  

A partial differential equation (PDE) is differential equation that contain an unknown function and its 

partial derivate with respect to two or more variables i.e., let U be an open subset of .nR  An expression of 

the form  

-1( ( ), ( ),..., ( ), ( ), ) 0 ( )k kF D u x D u x Du x u x x x U       …(1) 

is called a kth-order partial differential equation, where  

1

: ...
k kn n nF R R R R U R



      is given and :u U R  is the unknown. 

Example:  The equation 0t xu u   is a partial differential equation, the unknown function is u  and 

independent variables are and .x t  

2.1.1 Classifications of Partial Differential Equations 

Partial Differential Equations can be classified into four types 

(a) Linear (b) Semi-linear (c) Quasi-linear (d) Non-linear. 
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(a)  Linear Partial Differential Equation:  A Partial Differential Equation (1) is said to linear PDE if it 

has the form 

( ) ( )a x D u f x

k











            … (2) 

for a given function  anda k f      Here, it is clear that the coefficients of derivate are a function of x 

only. The above equation is said to be homogeneous if  f=0. 

For example: 0t xu u   is a transport equation which is of first order, linear and homogeneous. 

Some famous linear PDE are 

1. Laplace equation    0 or 0xx

i

u u     

2. Linear Transport Equation     

 
1 2

0,

, ...
n

n

t

x x x

u b u b R

Du u u u

   



  

3. Heat (Diffusion) Equation         0tu u    

4. Wave equation                     0ttu u    

(b)  Semi-linear Partial Differential Equation: A Partial Differential Equation (1) is said to semi-linear 

PDE if it has the form 

 1

0( ) ,..., , , 0,a x D u a D u Du u x

k

 





 



          … (3) 

Here, coefficient of highest order derivative is a function of x only. 

For example: ( ) 0xx x ta x u u u  . 

(c) Quasi-linear Partial Differential Equation: A Partial Differential Equation (1) is said to quasi PDE  

if it has the form 

 1 1

0( ,..., , , ) ,..., , , 0,a D u Du u x D u a D u Du u x

k

  





  



     … (4) 

Here, coefficient of highest order derivative are lower order derivative and function of x but not same 

order derivatives. 

For example: 0u u u u
x xx x t

   

(d) Nonlinear Partial Differential Equation: A Partial Differential Equation is non-linear in the highest 

order derivatives. 

For example: 
2 0u u u u

xx x t
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2.1.2 System of Partial Differential Equations 

An expression of the form is said to be system of partial differential equations if it is represented by  

-1( ( ), ( ),... ( ), ( ), ) 0 ( )k kF D u x D u x Du x u x x x U   

is called a kth order system of partial differential equations in u where  

1
: ...

k kmn mn mn m mF R R R R U R


        

is given and  1 2, ,..., is the unknown function such that :m mu u u u u U R    

For example:  

   1 2 30 where , ,u divu u u u u         

Note: The classifications of system of partial differential equations are same as in case of a partial 

differential equations. 

2.1.3 Solution of PDE 

 An expression u which satisfies the given PDE (1) is called a solution of the Partial Differential Equation.   

Well posed problem: A given problem in Partial Differential Equation is well posed (Hadaward) if it 

satisfies 

(i) existence 

(ii) uniqueness 

(iii)  continuously depend on the data of given problem. 

Classical Solution: If a solution of a given problem satisfies the above three conditions i.e., the solution 

of kth order partial differential equation exists, is unique and is at least k times differentiable, then the 

solution is called classical solution. Solutions of Wave equation, Lalpace, and Heat equation etc., are 

classical solutions. 

Weak Solution: If a solution of a given problem exists and is unique but does not satisfy the conditions 

of differentiability, such solution is called weak solution. 

For Example:  The gas conservation equation 

  0t xu F u 
 

models a shock wave in particular situation. So solutions exists, is unique, but not continuous. Such 

solution is known as weak solution. 

Note: There are several physical phenomenon in which the problem has a unique solution, but does not 

satisfy the condition of differentiability. In such cases, we cannot claim that we are not able to find the 

solution rather such solutions are called weak solutions 

2.2 Transport Equation   
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Homogeneous Transport Equation 

The simplest partial differential equation out of four important equations is the Transport equation with 

constant coefficient  

  . 0tu b Du             … (1)  

in  0,nR   , where 1 2 3( , , ..., )nb b b b b  is a fixed vector in nR  and  : 0,nu R R    is the unknown 

function u=u(x, t ).  Here  1,...,
n

nx x x R   denotes a typical point in space and 0t   is the time variable. 

Theorem: Initial Value Problem 

Consider the homogeneous transport equation 

  . 0tu b Du          in   0,nR                                 ….(1) 

 { 0}nu g on R t                                         ….(2) 

where and :n nb R g R R   is known and  
1
,...,

nx x xDu D u u u   for the gradient of u with respect to 

the spatial variables x . The problem is to compute ( , )u x t . 

Solution: 

Let ( , )x t  be any point in the [0, ).nR    To solve equation (1) , we observe the L.H.S. of equation (1) 

carefully, we find that it denotes the dot product of  
1 1,..., ,

nx xu u u  with  1,..., ,1nb b  .  So L.H.S. of equation 

(1) tells that the derivative of u in the direction of  ,1b  is zero in 1nR   dimensional space. So, the line 

through ( , )x t  in the direction of ( ,1)b  is 

 
( )

,
( )

x s x sb
s R

t s t s

  


  
          … (3) 

 This line hits the plane : { 0}nR t     at the point ( ,0)x tb  when s t  .  

Define a parametric equation of line in the direction  ,1b  is 

                     ,z s u x sb t s                … (4) 

where s R  is the parameter and :z R R .  

Then, differentiating (4) w.r.t. s, we get 

      
     , . ,

0

tz s Du x sb t s b u x sb t s     


               (using (1)) 

 z s  is a constant function of s on the line (3).  
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   u is constant on the line (4) through  ,x t  with the direction   1,1 nb R  . 

and ( ,0) ( )u x tb g x tb     

By virtue of given initial condition (2), we deduce that  

( , ) ( )u x t g x tb           … (5) for  and t 0.nx R    

Hence, if we know the value of u at any point on each such line, we know its value everywhere in

 0,nR    and it is given by equation (5). 

Conversely, if
1g C , then  ,u u x t  defined by (5) is indeed a solution of given initial value problem. 

From (5), we find that 

               .tu b D x tb      

and 

         Du=Dg 

Hence . . . 0tu b Du b Dg b Dg      for (x ,t) in  0,nR   and for t=0    ,0u x g x  on  0nR t   

Remark: If g is not 1C , then there is obviously no 1C solution of (1). But even in this case formula (5) 

certainly provides a strong and in fact the only reasonable, candidate for a solution. We may thus 

informally declare     , , 0nu x t g x tb x R t     to be a weak solution of given initial value problem 

even should g not be 1C . This all makes sense even if g and thus u are discontinuous.  Such a notion, that 

a non-smooth or even discontinuous function may sometimes solve a PDE will come up again later when 

we study nonlinear transport phenomenon. 

2.3 Non-homogenous Problem 

Theorem: Consider the non–homogeneous initial value problem of transport equation 

           
   . , 0, ...(1)

on { 0} ...(2)

n

t

n

u b Du f x t in R

u g R t

   

  
          

where , : ,  f : R [0, )  n n nb R g R R R     is known and  
1
,...,

nx x xDu D u u u   for the gradient of 

u with respect to the spatial variables x . Solve the equation for u=u(x,t) with initial condition (2). 

Solution:  Fix a point   1, nx t R  , as discussed before, the equation of line passing through  ,x t  in the 

direction of  ,1b  is given by    ,z s u x sb t s   , where s is the parameter. 

Differentiating this w. r. t. s  

            ,z s f x sb t s         (using (1)) 

Integrating w. r. t. s from –t to 0 
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0 0

,
t t

z s ds f x sb t s ds
 

     

     
0

0 ,
t

z z t f x sb t s ds


      

Substitute t+s= , ds=d  

      
0

0 ,

t

z z t f x b t d        

      
0

, ,0 ,

t

u x t u x bt f x b s t s ds             ( replacing by s  ) 

      
0

, ,0 ,

t

u x t u x bt f x b s t s ds      

      
0

, ,

t

u x t g x bt f x b x t s ds           , 0nx R t   

It is the required solution of initial value problem for non-homogeneous transport equation. 

2.4   Laplace’s Equation and its Fundamental Solution 

We get the Laplace’s equation in several physical phenomenon such as irrotational flow of incompressible 

fluid, diffusion problem etc.  Let nU R be a open set, x R and the unknown is :u U R ,  u u x

then, the Laplace’s equation is defined as 

                                                           0u                 … (1) 

and Poisson’s equation 

                                                       u f               

where the function :f U R is given. 

and also remember that the Laplacian of u is
1

i i

n

x x

i

u u


  . 

Definition: Harmonic function 

 A 2C  function 𝑢 satisfying the Laplace’s equation 0u   is called a harmonic function. 

Theorem: Find the fundamental solution of the Laplace’s equation (1). 

Solution:  Probably, it is to be noted that the Laplace equation is invariant under rotation. So we attempt 

to find a solution of Laplace’s equation (1) in nU R , having the form (radial solution) 

                   u x v r ,            …(2) 
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where  
1

2 2 2

1 ... nr x x x    and v is to be selected (if possible) so that 0u   holds. 

We note that  

                  
1

2 2 2

1

1
... 2

2

i
n i

i

xr
x x x

x r


   


      0x   

for i=1,2,…,n. 

Thus, we have 

                  ' ,
i

i
x

x
u v r

r
   

and    

2 2
1

" '
2 3

x x
i iu v r v r

x x rr ri i

 
   
 
 
 

 

 for i=1,…,n.  

So       

                        
2 2

2
1 1 1

1 1
''( ) '( ) " '

i i

n n n
i i

x x

i i i

x x n
u u v r v r v r v r

r r r r  

      
          

     
     

Hence 0u   if and only if 

                      
1

" ' 0
n

v v
r


                  

If ' 0v  , we deduce 

             
" 1

log ' '
'

v n
v

v r


  ,  

Integrating w. r. t. r, 

                        log ' 1 log logv n r a     

where log a  is a constant. 

Now,              
1

'
n

a
v

r 
   

Again integrating 

                   
 

 

log 2

3
2

a r b n

v r a
b n

nr
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where a and b are constants. 

Therefore, if r >0, the solution of Laplace’s equation is 

                    

 

 2

log 2

3
n

a x b n

au x
b n

x


  


   



 

Without loss of generality, we take b=0. To find b, we normalize the solution i.e. 

                          1u x dx
nR

  

So, the solution is  

                     

 

   
 2

1
log 2

2

1
3

2
n

x n

u x

n
n n n x







 


 
 



                          … (3) 

for each , 0nx R x   and ( )n  is the volume of the unit ball in .nR   

We denote this solution by  x  and  

                       

 

   
 2

1
log 2

2

1
3

2
n

x n

x

n
n n n x










  

 


               … (4) 

defined for , 0nx R x  , is the fundamental solution of Laplace’s equation. 

Remarks: 1. We conclude that the solution of Laplace’s equation 0u  ,  x  is harmonic for 0x  . So 

the mapping ( )x x , 0x   is harmonic. 

2. Shifting the origin to a new point y, the Laplace’s equation remains unchanged. So  x y   is harmonic 

for x y . If : nf R R  is harmonic, then    x y f y   is harmonic for each
ny R  and x y . 

3. If we take the sum of all different points y over nR , then 

                        
nR

x y f y dy     is harmonic. 

Since      
n

x

R

u x x y f y dy      

is not valid near the singularity x y . 



74 Partial Differential Equations 

We must proceed more carefully in calculating .u  

2.4.1 Fundamental Solution of Poission’s Equation 

To solve the Poission equation is , where , : ,n nu f x U R f R R U       is an open set and unknown 

function is : .u U R   

Solution: We know that ( ) ( ) forx x y f y x y    is harmonic for each point ,ny R

and so is the sum of finitely many such expression constructed for different points yConsider the 

convolution 

  ( ) ( ) ( )
nR

u x x y f y dy            … (5) 

Form equations (4) and (5), we have 

             

 

   
 2

1
log( ) ( ) 2

2
( )

1 ( )
3

2

n

n

R

n

R

x y f y dy n

u x
f y

dy n
n n n x y



 


 


 
 
  




                …  (6) 

For simplicity, we assume that the function f used in Poission’s equation is twice continuously 

differentiable. Now, we show that ( )u x  defined by equation (5) satisfies 

(i) 
2 ( )nu C R   

(ii) in .nu f R     

Consequently, the function in (6) provided us with a formula for a solution of Poission’s equation.  

Proof of (i): 

Define u as, 

                         
nR

u x x y f y dy    

By change of variable x y z    

 ( ) ( ) ( ) ( ) ( )
n nR R

u x x f x z dz x f x y dy         

By definition .
ixu .is 

 

( ) ( ) ( ) ( )
( ) (*)

where 0 is a real number , (0,0,...,0,1,0,...,0) with 1 in the i  position.

n

i i

R

n th

i i

u x he u x f x he f x
y dy

h h

h e R e

    
   

 

  


  

Thus, on taking 0h   in equation (*), we have  
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2 2

( ) ( )
( ) (**)

for 1,2,3,...,

Similarly,

( ) ( )
( ) (***)

for , 1,2,...,

n

n

i iR

i j i jR

u x f x y
y dy

x x

i n

u x f x y
y dy

x x x x

i j n

   
   

  



    
   

     







  

As the expression on the right hand side of equation (***) is continuous in the variable x, we see that  

                
2 ( )nu C R   

This proves (i). 

Proof of (ii) 

  (ii) From part (i), we have 

                            
n

x

R

u x y f x y dy      

Since  y  is singular at 0y  , so we include it in small ball  0,B  , where 0   

Then, 

                            
 

   
 0, 0,n

x x

B R B

u x y f x y dy y f x y dy
 

           

                                   I J                                      …(7) 

where 

                          
 0,

x

B

I y f x y dy



                      …  (8) 

                          
 0,n

x

R B

J y f x y dy



                  …  (9) 

Now, 

                         
 0,

x

B

I y f x y dy



       

                             
 

 
 

2

0,

nL R
B

c D f y dy



                

                             
 

 

2

2

2log

3

nc

nc
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Now, 

                           
 0,n

x

R B

J y f x y dy



     

                                 
 0,n

y

R B

y f x y dy



                         , x y
x y

  
     

  
 

Integrating by parts 

                            
 

 
 

 
 0,0,n

y

BR B

f x y
J D y D f x y dy y ds y






 
     

   

where    denoting the inward pointing unit normal along  0,B  . 

                          J K L                                            

We take, 

                          
 

 
 0,B

f x y
L y ds y






 
 

  

                                
     

 0,

nL R

B

Df y ds y






   

                         
 

 

2log

3

nc
L

nc


 




 


       … (10) 

Now                      
 0,n

y

R B

K D y D f x y dy



        

Integrating by parts                                            

                               
 

 
   

 0,0,n BR B

y
K y f x y dy f x y ds y







    

   

                                   
 

   
 0,B

y
f x y ds y







  

                    (since   is harmonic) 
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1 2

2

1 1

, ,...,

1 1

( 2) ( )

( 2) 1 1

( 2) ( ) ( )

1
0

n

n

i i

i

n n

i

n

D y
y y y

Also
y y n n n y

y yn

n n n y yy n n y

y
y

n n y



 





 

   
   

   

  
  

   
 

  
 

 


 

           

 and                       
y y

y




 
         on           0,B   

So, 

                               
 

 
  1

1
.

n

y
D y

n n


   


  


         on  0,B    

Now, we have 

                               
 

   
 

1

0,

1
n

B

K f x y ds y
n n




  



                               

                          
 

 
,B x

K f y ds y f y



      as 0                                                 … (11) 

Combining equations (5) to (11) and letting 0  , we have 

                                    u x f x    

This completes the proof. Thus ( )u x  given by (5) is the solution of Poission’s equation. 

2.4.2 Some Important Properties (in Polar coordinates) 

(i)  
0 ( , )n x rR

fdx fds dr





     

(ii) 

0 0( , ) 0 ( , )

r

B x r B x r

fdx fds dr


 
  

 
 

     

(iii) 

0 0( , ) ( , )B x r B x r

d
fdx fds

dr
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2.5 Mean-value Theorem 

Theorem: Mean-value formulas for Laplace’s equation 

If u  is a harmonic function. Then 

                                        
   , ,B x r B x r

u x uds udy


                         …  (1) 

for each ball  ,B x r U . 

OR 

If u is harmonic function, prove that u equals to both the average of u over the sphere  ,B x r and the 

average of u over the entire ball  ,B x r  provided  ,B x r U . 

Proof:  (Proof of Part I) 

  Set                 
 ,

:
B x r

r u y ds y


                                           …  (2)         

Shifting the integral to unit ball, if z  is an arbitrary point of unit ball then 

                                  
 ,

:
B x r

r u x rz ds z


    

Then 

                                 
 0,1

' .
B

r Du x rz zds z


    

And consequently, using Green’s formulas, we have 

                                  
 ,

' .
B x r

y x
r Du y ds y

r



    

                                           
 ,

.
B x r

Du y ds y


  , where   is unit outward normal to  ,B x r . 

                                
 ,

'
B x r

u
r ds y





 

  

   1

( , )

1

( ) n

B x r

u y dy
n n r 

    

                                         
 ,B x r

r
u y dy

n
   = 0                                         0 ( , )u on B x r    

Hence   is constant and 
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0 0

,

lim lim
t t

B x t

r t u y ds y u x
 



                            …(3) 

From (2) and (3), we have 

                                    
 ,B x r

u x u y ds y


                                         …  (4) 

(Proof of Part II) 

Using coarea formula, we have 

                                
   , 0 ,

r

B x r B x t

udy uds dt


 
 
 
 

    

                                                  1

0

r

nu x n n t dt    

                                                   nu x n r  

                                 
   ,

1
n

B x r

u x udy
n r

        

                                              

 ,B x r

udy                                …  (5) 

From (4) and (5), we have 

                                    
   , ,

( )
B x r B x r

u x uds udy


    

Hence proved. 

Converse of Mean- value Theorem 

Theorem: If  2u C U  satisfies the mean value formula 

                                                      
 ,B x r

u x uds


   

for each ball  ,B x r U , then u  is harmonic. 

Proof: Suppose that u  is not harmonic, so 0u  . Therefore there exists a ball  ,B x r U  such that 

0u   within  ,B x r . 

But then for  , we know that 

                                                   
 ,

0 ' 0
B x r

r
r u y dy

n
      

which is a contradiction. Hence u  is harmonic in U . 



80 Partial Differential Equations 

2.6 Properties of Harmonic Functions 

Here, we present an interesting deduction about the harmonic function, all based upon the mean-value 

formula by assuming the following properties that nU R  is open and bounded. 

2.6.1 Strong Maximum Principle, Uniqueness 

Theorem: Let    2u C U C U   is harmonic within .U  

(i) Then           max maxu u
U U




 

(ii)  Furthermore, if U is connected and there exists a point 0x U such that 

                                 0 maxu x u
U

 , 

then u  is constant withinU . 

 Assertion (i) is the maximum principle for Laplace’s equation and (ii) is the strong maximum principle. 

Proof: (ii) Suppose there exist a point 0x U  such that 

   max
0

u x u M
U

                   …  (1) 

Then for  0 ,
0

r dist x U   ,  the mean value property implies 

                                      

 
0,

0

0

( )

( , )

( , )

0

1

( )

( )

B x r

n

B x r

n

B x r

M u x udy

udy
n r

M
dy

n r





 











 

                                                         M  

Equality holds only if u M within  0 ,B x r .  So we have,  u y M for all  0 ,y B x r . To show that 

this result holds for the set U . 

Consider the set 

                                       X x U u x M    

We prove that X is both open and closed. 

X is closed since if x  is the limit point of set X, then    a sequence  nx in X such that  nx x  
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Since u is continuous so     nu x u x . 

So                     u x M  

                  x X   

                 X  is closed. 

To show that X  is open, let x X , there exists a ball  ,B x r U  such that 

                                           
 ,B x r

u x udy   

So  ,x B x r X  . 

Hence X is open. 

But U  is connected. The only set which is both open and closed in U is itself .U So U X . 

Hence  u x M   x U  . So u   is constant in U . 

(i) Using above result, we have    0u y u x  for some y  and suppose 0x U . 

Since U is harmonic, so by mean value theorem, there exists a ball  0 ,B x r U such that 

                                              
 0

0

,B x r

u x uds y


   

                                             
 

   
 0

1

,

1
n

B x r

M u y ds y
n n r 



   

                                                    u y  

Maximum value is less than  u y , which is a contradiction. 

Hence 0x U . 

Remarks: 1. If U is connected and    2u C U C U  satisfies  

                                                          0u   in U  

                                                           u g  on U  

where 0g  . 

Then u is positive everywhere in U if g is positive somewhere on U . 

2. An important application of maximum modulus principle is establishing the uniqueness of solutions to 

certain boundary value problem for poission’s equation. 
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Theorem: (Uniqueness)  

Let  g C U  ,  f C U . Then there exists at most one solution    2u C U C U   of the boundary 

value problem 

                                                       u f   in U  

                                                             u g  on U       

Proof: Let u  and u  be two solutions of given boundary value problem, then 

                                                              u f   in U           

                                                                 u g  on U  

and 

                                                               u f  in U  

                                                                 u g  on U  

Let  w u u    

                                                                 0w   in U  

                                                                  0w   on U  

w  is harmonic in U and w  attains maximum value on boundary which is zero. If U  is connected 

then w  is constant. So 0w   in U  

Hence u u  in U . 

 

 

2.6.2 Regularity 

In this property, we prove that if 2u C is harmonic, then necessarilyu C . Thus harmonic functions 

are automatically infinitely differentiable. 

Theorem: If  u C U satisfies the mean value property for each ball  ,B x r U , then 

                                                      u C U  

Proof: Define a set   ,U x U dist x U 

    and     be a standard mollifier. 

Set        u u 


     in   U                       …  (1) 

We first show that  u C U


 . 
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Fix x U


 , where   1 2
, ,...,

n
x x x x . 

Let h be very small such that x he U
i 

  . 

                                    *u x u 


  

                                               
1

n

U

x y
u y dy




 

 
  

 
                         …  (2) 

                                      
1 x y he

iu x he u y dy
i n

U

 




  
   

 
 

           … (3) 

Now using (2) and (3), we have 

                                    
   

 
1

i

n

U

x y he x y
u x he u x

i
u y dy

h h


   
 



      
      

   
 
  

        

Taking the limit as 0h   

                                       
 

 1

1
n

i i iU U

x y

x yu
u y dy u y dy

x x x
 







 

 
       

     

Since  nC R  .   So 
i

u

x




 exists. 

Similarly D u 
exists for each multi-index  .  

So  u C U


 . 

We now show that u u  on U  . 

Let x U  then 

                                      u x x y u y dy

U

 


   

                                              
 

1

,

x y
u y dy

n
B x
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 0 ,

1
n

B x r

r
u y ds dr




 



  
      

        (using the cor. of coarea formula) 

                                                  1

0

1 n

n

r
n n r u x dr



 
 

 
  

 
     (by Mean value formula) 

                                                
    1

0

n

n

n n u x r
r dr




 

 
  

 
   

                                                
 

 0,

n

B

u x y
dy




 

 
  

 
  

                                                    
 0,B

u x y dy



                  (by definition) 

                                                   u x  

So u u   in U


 and so  u C U


  for each 0  . 

Note: The above property holds for each 0  . It may happen u may not be smooth or even continuous 

upto U .  

2.6.3  Local Estimate for Harmonic Functions 

Theorem: Suppose u  is harmonic in U . Then 

(i)     1 ,0
0

C
kD u x u

L B x rn kr

 
                                                      … (1) 

For each ball 0
( , )B x r U  and each multiindex   of order k  . 

(ii) 
 

0

1
C

n
      ,   

 
 

12
k

n

k

nk
C

n



          1,...k      … (2) 

Proof: We prove this by induction. 

For 0, 0k   . 

To show  
    

1
1 ,0

u x u
L B x rnr n

  

By mean value theorem 

                             

 
0

,
0

u x u y dy

B x r

    for each ball  0 ,B x r U  
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 0

0

,

1
n

B x r

u x u y dy
n r

   

                            
    1

0
0 ,

1
n L B x r

u x u
n r

                          …  (3) 

                            
  1

0

0 0
0 ,n L B x r

C
D u x u

r
  

Hence the result. 

For k=1, To show  

                             
  1

0

1
0 1 ,n L B x r

C
Du x u

r 
  

where                  
 

1

1

2n n
C

n



     

Consider 

                                
2 2

2 2

1

...
i i ix x x

n

u u u
x x

 
   

 
    

                                        0
i

u
x


  


  

 So, 
ixu  is harmonic. By mean value theorem 

                                         
0

0

,
2

i ix x

r
B x

u x u dx
 
 
 

   

                                                      

  0 ,
2

1

2

ixn

r
B x

u dx
r

n  
 
 


 
 
 

      

                                                       

  0 ,
2

1

2

in

r
B x

uv ds
r

n  
 
 


 
 
 

         (By Gauss- Green Theorem) 
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                                                        =

0 ,
2

2n

i

r
B x

uv ds
r

 
  

 

     

                                                        
0 ,

2

2n

r
L B x

u
r

   
  

  

                         …  (4) 

If 0 ,
2

r
x B x

 
  

 
 then  0, ,

2

r
B x B x r U
 

  
 

. 

By equation (3) 

                                 
 

2
1 ,

2

n
ru x u

L B xnn r

  
  
  

 

                                         
    
2

1 ,
0

n
u

L B x rnn r
  

Hence 

                               
    
1 2

1, ,
0 02

n
ru u

L B x L B x rn r

           
  

                  … (5) 

From (4) and (5) 

                              
    

12 .
1 ,0 1 0

n n
u x u

L B x rx nn ri 





 

                        
1 1 ,0 1 0

C
D u x u

L B x rnr

 
        

Hence result is true for k=1. 

Assume that result is true for each multiindex of order less than or equal to k-1 for all balls in U . Fix 

0( , )B x r U  and   be multiindex with k    

 

                         
ix

D u D u   for some  1,2,3,...,i n     

where 1k   . Consider the ball 
0
,
r

B x
k
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                               0
ix

D u x D u   

                                            
0 ,

r
L B x

k

kn
D u

r



   
  
  

                   … (6) 

If 0 ,
r

x B x
k

 
  

 
 then 

                           0

1
, ,
k

B x r B x r U
k

 
  

 
 

By assumption, in the ball 
1

,
k

B x r
k

 
 
 

 

                            
 

 
1

1
1

10 1 ,

2 1

1

k
n

k
n k L B x r

k

n k
D u x u

k
n r

k








      
  

  
 

 
 

                        … (7) 

From (6) and (7)  

                            
 

 
  1

0

1
1

0 1 ,

2 1

1

k
n

n k L B x r

n kkn
D u x u

r k
n r

k








 

  
 

 
 

 

                                            
 
    1

0

1

,

2
k

n

n k L B x r

nk
u

n r




    

Since, 

                          
 

1
1

2 2 1

n

k

k

 
 

 
    for all  2k       

Hence result holds for k  . 

2.6.4  Liouville’s Theorem  

We see that there are no nontrivial bounded harmonic functions on all of 
nR   

Theorem: Suppose : nu R R  is harmonic and bounded. Then u  is constant. 

Proof: Let 0 , 0nx R r  , then by mean value theorem 
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0

0 0

,
2

i ix x

r
B x

Du x u x u dx
 
 
 

    

                                                     = 
 

0 ,
2

2n

n

r
B x

uvds
n r

 
  

 

       ( By Guass Green’s theorem) 

                                                     
0 ,

2

2n

r
L B x

u
r

   
  

  

  

If 0 ,
2

r
x B x

 
  

 
 then  0, ,

2

r
B x B x r
 

 
 

 

                                        
    1

0 ,

1 2
n

L B x r
u x u

n r

 
  

 
 

Hence 

                                    
    1

0
0 ,

2 2 1
i

n

x L B x r

n
u x u

r r n

 
  

 
 

                                                  
    1

0

1

1 ,

2n

n L B x r

n
u

r n




  

                                                    

12
0n

n

L R

n
u

r




   as 0r   

Hence 0Du  . 

So u  is constant. 

Theorem: Representation Formula 

 Let  2 , 3n

cf C R n  . Then any bounded solution of u f   in nR             (1) 

of the form 

                                                 
nR

u x x y f y dy c             nx R  

For some constant c and  x  is the solution of Laplace’s equation. 

Proof: Since   0x   as x   for 3n   

                              x  is bounded. 



Laplace Equation and its solution 89 

 

Let u  be a solution of equation (1) which is represented as 

                                               
nR

u x y f y dy    

and it is bounded. 

Since  2 nf C R and  x is bounded for 3n  . Let u be another bounded solution of equation (1)  

Define w u u   

                                             0w   

and w is bounded     ( difference of two bounded functions)    

By Liouville’s theorem 

                                              wconstant 

                                            oru u c    

                                           u u c    

This is the required result. 

Note: For n=2,  
1

log
2

x x



  is unbounded as x  and so may be  

                                           
2R

x y f y dy   

2.6.5 Analytically 

Theorem: If  u   is harmonic in U then u  is analytic inU . 

Proof: Suppose that 
0

x
 
be any point in U . Firstly, we show that u can be represented by a convergent 

power series in some neighbourhood of 0x . 

Let  0

1
,

4
dist x U    

Then M
    1

0 ,2

1
n L B x r

u
n r

                    …  (1) 

for each      0 0, , , ,2x B x r B x r B x r U    

By estimates of derivatives 

                                           
  1

0
0 ,

k

n k L B x r

c
D u x u

r
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  where       
 

 

12
k

n

k

nk
c

n



 for each k   

So                  
  

 
    1

00

1

0 ,,

2
k

n

n k L B x rL B x r

nk
D u x u

n r









  

                                                    

12n n
M

r






 
  

 
                     …  (2) 

By Sterling formula 

                                  

1

2

0

1
lim

! 2

k

kk

k

k e 




  

                                  !k kk ck e  , where c is constant. 

Hence, 

!ce
 

                   

  …   (3) 

for some constant c and all multi indices . 

Furthermore, the Multinomial theorem implies 

                                       
!

1 ... 1
!

kk

k

n






                 …(4) 

where   ! !n


                              

Using (4) and (3) in (2) 

                                   
  0

1

0 ,

2
!

n

L B x r

n
D u x M ce n

r



  


 
  

 
 

                                                                 

1 22
!

n n e
Mc

r




 

  
 

  

Taylor series foru   at 0x  is 

                                 
 

 0

0
!

D u x
x x




 
  

The sum taken over all multiindices. 
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We claim that this power series converges, provided 

                            
0 2 32n

r
x x

n e
     

To verify this, let us compute for each N 

The remainder term is 

                            
   0 0 0

!
N

N

D u x t x x x x
R x



 





  
   

For some 0 1t  , t depending on x. 

                           
1 2

2 3

2

2

N Nn

N n

n e r
R x cM

r n e





   
    

  
  

                                        
1

2

N

N

cM
n 

 
  

 
  

                                         0
2N

cM
   as 0N   

Series is converges.  

So  u x  is analytic in neighbourhood of 0x . 

But 0x  is arbitrary point of U . 

So u  is analytic in U . 

 

2.6.6 Harnack’s Inequality 

This inequality shows that the values of non-negative harmonic functions within open connected subset 

of U , are comparable. 

Theorem: For each connected open set V U ,   a positive constant c, depending only on V , such that 

                                      sup inf
VV

u c u                         …   (1) 

For all nonnegative harmonic functions u  in U . 

Thus in particular 

                                          
1

u y u x cu y
c

                     ,x y V   

Proof: Let  
1

,
4

r dist V U   
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Choose , ,x y V x y r   . Then 

                                          
     ,2 ,

1

2n n

B x r B y r

u x udz udz
n r

               

                                                   =
 

 
,

1 1

2 2n n

B y r

udz u y   

                                             2nu x u y                 …  (2) 

Interchanging the role of x and y 

                                               2nu y u x                    …   (3) 

Combining (2) and (3) 

                                               
1

2
2

n

n
u y u x u y           ,x y V  

Since V  is connected, V  is compact, so V  can be covered by a chain of finite number of balls  
1i i

B


 

such that 0i jB B   for i j  each of radius 
2

r
. 

Therefore, 

                                           
1

2nN
u x u y               ,x y V   

                                           
1

u x u y
c

  

Similarly, 

                                           cu y u x  

So,                                      
1

u y u x cu y
c

              ,x y V   

 

2.7 Green’s Function: 

Suppose that nU R  is open, bounded and U is 1C . We introduced general representation formula for 

the solution of Poisson’s equation 

                                          u f    in U                        … (1) 

subjected to the prescribed boundary condition 

                                             u g   on U                      …  (2) 
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Theorem: (Derivative of Green’s function)  

Derive the Green’s function of equation (1) under the initial condition (2). 

Proof: Let  2u C U  is an arbitrary function and fix x U , choose 0   so small that  ,B x U 

and  apply Green’s formula on the region  ,V U B x    to  u y  and  y x  . 

Then, we have 

                                               
V

u y y x y x u y dy



                        

                                                   
 

 
V

u y
u y y x y x ds y


 



 
    

  
     

where   denoting the outer unit normal vector on V . Also   0x y    for x y . 

Then  

                                           
V

y x u y dy



     

                                               
 

 
 

 

 
,U B x

y x u y
u y y x ds y


 

 

   
   

  
         … (3) 

Now 

                       
 

 
 

      
,

,

L B x

B x

u y
y x ds y Du y x ds y





 




    

   

                                                                      1

2

1
( ) 0n

n
c n n o  





       as 0          … (4) 

Also 

                       
 

 
 

 
 

 
 , 0,B x B

y x y
u y ds y u y x ds y

 
 

 

  
 

    

Now 

                             
 
1

n

y
D y

n n y
         , 0y   

                            
y

y
   =

y




  

 
 

 

 
 

 
 

1

0, 0,

1
n

B B

y
u y x ds y u y x ds y

n n
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1

,

1
n

B x

u y ds y
n n


  



   

                                     =    
 

 
,B x

u y ds y u x


    as 0                      … (5) 

Using (4) and (5) in equation (3) and making 0   

                        

   
 

     
U U

y x u
y x ydy u y y x ds y u x

 


  
        

  
    

               

Thus 

                             
 

     
U U

y xu
u x y x u y ds y y x u y dy

 


  
        

  
         …(6) 

This identity is valid for any point x U and for any function  2u C U and it gives the solution of 

problem defined by equation (1) and (2) provided that   ,
u

u y





 are known on the boundary U  and the 

value of u  in U . But 
u






 is unknown to us along the boundary. Therefore, we have to eliminate 

u






 

to find the solution. For it, we define a correction term formula  x y   (for fixed x) given by the 

solution of  

                                        0x    in U 

                                          x y x     on U                …. (7) 

Let us apply Green’s formula once more, 

                                  
x

x x x

U U

u
u y u y dy u y ds


  

 


  
          
             

Then we have 

                        
x

x x

U U

u
u y dy u y dx


 

 


  
    

  
                          … (8) 

Adding equation (6) and (8) 

                              
   

 
x

x

U U

y x y
u x y x y u y dy u y dy







                   … (9) 

Now we define Green’s function for the region U  as 

 y x
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                                       , xG x y y x y              , ,x y U x y                    …  (10) 

From equation (9) and (10) 

                                 
 

 
,

,
U U

G x y
u x G x y u y dy u y ds x





   

                        … (11) 

where 
 

   
,

, .y

G x y
D G x y y







is the outer normal derivative of G with respect to the variable y. Also 

we observe that equation (11) is independent of 
u






. 

Hence the boundary value problem given by equation (1) and (2) can be solved in term of Green’s function 

and solution is given by equation (11) is known as Representation formula for Green’s 

 Function.                     

Note: Fix x U . Then regarding G as a function of y, we may symbolically write  

                                                        xG     in U  

                                                           G = 0  on  U  

where  x  denoting the Dirac Delta function. 

2.7.1 Symmetry of Green’s Function 

Theorem: Show that for all , , ,x y U x y    ,G x y  is symmetric i.e.    , ,G x y G y x . 

Proof: For fix  , ,x y U x y   

Write 

                                , , ,v z G x z w z G y z         z U  

Then 

                                 0 , 0v z z x w z z y       

and                    0w v    on  U . 

Applying Green’s formula on    , ,V U B x B y        for sufficiently small 0   yields. 

                             
 

 
 , ,B y B x

w v v w
v w ds z w v ds y

 
   

 

      
     

      
                 … (1) 

  denoting the inward pointing unit vector field on    , ,B x B y   . 

Now w  is smooth near x , so 
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 ,

,

B x

B x

w
vds Dw ds




 






   

                                                       1 0nc     as  0                             …   (2) 

We know that       ,xv z z x z   where 
x  is smooth in U .Thus 

                               
 

   
 

 
0 0

, ,

lim lim
B x B x

v
wds x z w z ds w x

 
 

  
 

 
  

     

 Now we have 

                                 
 

0
,

lim
B x

v w
w v ds z w x




 


  
  

  
  

Similarly, 

                                 
 

 
0

,

lim
B y

w v
v w ds z v y




 


  
  

  
  

Therefore from equation (1) , we have 

                                           w x v y  

                                       , ,G x y G y x   

Hence proved. 

 

2.7.2 Green’s Function for a Half Space 

Definition: If  1 1,..., , n

n nx x x x R   , its reflection in the plane 
nR  is the point 

                                1 1,..., ,n nx x x x . 

Definition: Green’s function for the half space 
nR  is 

                                                  ,G x y y x y x                    , ,nx y R x y   

Example: Solve the boundary value problem 

                                             0u    in  
nR  

                                             u g   on  
nR  

with the help of Green’s function. 
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Solution: Let , ,nx y R x y  . 

By definition,      , xG x y y x y    

We choose the corrector term 

                             x y y x                               … (1) 

where x  is reflection of x  w. r. t. 
nR . 

Clearly 0x    in 
nR  

Now 

                     
   

2

1

2
n

y x
n n n y x


  

 
 ,     3n                                              

                     
 

1 1

1

n

y x
y x

y n n y x


  

 
 

                     
 

 

 

22
1 1

22

1

1
n n

y x

y n n y x n y x 


 
  

  
 

                           

               ----------------------------------------------------------- 

               ----------------------------------------------------------- 

              ------------------------------------------------------------ 

                  
 

 
2

2

2

1
n nn

n

y x
y n n y x

 
   

 
 

Adding      0y x     on  
nR    y x y x    

So           y x y x     

Hence both conditions are satisfied. 

So, Green’s function 

                            ,G x y y x y x      is well defined. 

So, using the representation formula 

                                 0 ,
nR

G
u x g y x y ds y





 

  



98 Partial Differential Equations 

                               ˆ, . ,
n

G G
x y DG x y

y




 
  

 
 

                                
n n n

G
y x y x

y y y

  
   

  
 

                                     
   

n n n n

n n

y x y x

n n y x n n y x 

  
   

   

 

                                      
 

2 n

n

x

n n x y



            ,non R y x y x            

                             
 

 
 

2

n

n

n

R

g yx
u x ds y

n n x y





                               nx R  

This is the required solution and is known as Poisson’s formula. 

The function 

                             
 

2 1
, n

n

x
K x y

n n x y



              ,n nx R y R    

is Poisson’s kernel for 
nR . 

2.7.3 Green’s Function for a Ball 

Definition: If  0nx R  , the point  
2

x
x

x
  is called the point dual to x with respect to  0,1B

Definition: Green’s function for the unit ball is       ,G x y y x x y x    

  , 0,1 ,x y B x y  . 

Example: Solve the boundary value problem 

                                                          0u    in   0,1B  

                                                          u g    on   0,1B  

   with the help of Green’s function. 

Solution: Fix any point  0 0,1x B  and y x  

The Green’s function is given by 

                                                             ,G x y y x y    

We choose                   x y x y x     
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where x  dual of x  w. r. t.  0,1B  

 As we know  y x   is harmonic. So  y x   is also harmonic for y x . Similarly  
2 n

x y x

   

is harmonic for y x . 

Or   x y x   is harmonic for y x  

So, 0x   in   0,1B  

On  0,1B : 

                                     x x y x     

But 

                                   

2 2

2 2 2 1
1 2

... n
n n

xx
x y x x y y

x x

     
          

   
     

 

                                                     
2 2

2 2

1 2xy
x y

x x

  
   

  

 

                                                     2 1 2x xy                          1y   

                                                      
2 2

2x y xy    

                                                       
2

x y   

So       x x y x y x       . 

Hence both conditions of  x y are satisfied. 

So 

                    ,G x y y x x y x        is well defined. 

Hence solution of given problem is given by 

                                          
 0,1B

G
u x g y ds y





 

  

Now on  0,1B  

                        .
G G

y




 


 
,   being the unit normal. 
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G y

y y





 i

i

G
y

y





           1y   

                        
   

2

i ii i

n n

i

y x xx yG

y n n x y n n x y 


 

  
 

                               
 

2

i i

n

y x y

n n x y





 

                         
 
 

2
1

n

xG

n n x y 


 

 
 

Therefore we have 

                            
  

 
2

0,1

1
n

B

x
u x g y ds y

n n x y





  

This is the required solution. 

2.7.4 Energy Methods 

Theorem: (Uniqueness) 

 There exists at most one solution  2u C U  of the boundary value problem 

                                             u f    in U  

                                               u g   on  U  

where U  is open, bounded and U is 1C . 

Proof: Let u  be another solution of given problem. 

Let  w u u   then  0w   in U  

                                  0w   on U  

Consider  

                        
i

i
x

x
U U

w wdx w w dx    

Integrating by parts 

                                       
i i ix x x

U U

w w dx w wvds


     ,    being the unit normal 

                                        2
0

U

Dw dx    
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2

0Dw    in  U  

                       0Dw    in  U 

                       w   constant in U  

But   0w   in U     

Hence 0w    in  U  

u u   

Hence uniqueness of solution. 

Dirichlet’s Principle: Let us demonstrate that a solution of the boundary value problem for Poisson’s 

equation can be characterized as the minimize of an appropriate functional. 

Thus, we define the energy functional 

                                                  
21

2
U

I w Dw wfdx   

w belonging to the admissible set  2 ( ) |A w C U w g on U       

Theorem: Let  2u C U  be a solution of Poisson’s equation. Then 

                                                       min
w A

I u I w


                            …  (1) 

Conversely, if u A  satisfies (1) then u is a solution of boundary value problem 

                                                     u f   in U  

                                                        u g    on U                              … (2) 

Proof: Let w A  and u be a solution of Poisson’s equation. So 

                                                       u f    in  U  

            0
U

u f u w dx      

                      
U U

u u w dx f u w dx        

Integrating by parts 

             0 . .
U U U

Du D u w dx u w Du vds f u w dx


         

               . 0 .
U U

Du Du fu dx Du Dw fw dx       
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2

.
U U

Du fu dx Du Dw fw dx      

 2 2 21 1

2 2
U

Du fu dx Du Dw fw dx
 

     
 

         (By Cauchy-Schwartz’s inequality) 

So  
2 21 1

2 2
Du fu dx Dw fw dx

   
     

   
   

         I u I w  

Since u A , So 

                              min
w A

I u I w


  

Conversely, suppose that    min
w A

I u I w


  

For any   cv C U , define     i I u v     ,  R   

So  i   attains minimum for 0   

     ' 0i     for  0   

    
21

2
U

i Du Dv u v f dx  
 

    
 
  

             
2 221

2
U

Du Dv DuDv u v f dx  
 

     
 
          

    ' 0 .
U

i Du Dv vf dx   

Integration by parts 

     0 .
U U

v udx Du ds vfdx


        

     0
U

u f vdx                         cv C U    

This is true for each function  cv C U . 

So  u f     in  U . 

So u is a solution of Poisson’s equation. 




