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2.1 Introduction

To model the physical problems, the partial differential equations (PDESs) are the common method. PDEs
can be used to describe a wide variety of phenomena such as sound, heat, diffusion, electrostatics,
electrodynamics, fluid dynamics, elasticity, gravitation and quantum mechanics, etc. In this chapter, we
will discuss about different types of the partial differential equations, their classifications and the classical
and weak solutions, etc.

Partial Differential Equation

A partial differential equation (PDE) is differential equation that contain an unknown function and its

partial derivate with respect to two or more variables i.e., let U be an open subset of R". An expression of
the form

F(DXu(x), DK Lu(x),..., DU(x),u(x),x) =0 (x V) (1)
is called a k"-order partial differential equation, where
F:R" xR™ x..xR"xRxU —R is givenand u:U — R is the unknown.

Example: The equation u, +u, =0 is a partial differential equation, the unknown function is u and
independent variables are x and t.

2.1.1 Classifications of Partial Differential Equations

Partial Differential Equations can be classified into four types

(a) Linear (b) Semi-linear (c) Quasi-linear (d) Non-linear.
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(@) Linear Partial Differential Equation: A Partial Differential Equation (1) is said to linear PDE if it
has the form

> a,(x)DU=f(x) . (2

|a| <k
for a given function a, (e <k)and f Here, it s clear that the coefficients of derivate are a function of x
only. The above equation is said to be homogeneous if f=0.
For example: u, +u, =0 is a transport equation which is of first order, linear and homogeneous.
Some famous linear PDE are

1. Laplace equation Au=0 or »u, =0

2. Linear Transport Equation U, +bAU=0, beR"

Du = (le Uy Uy )
3. Heat (Diffusion) Equation u,—Au=0
4. Wave equation U, —Au=0

(b) Semi-linear Partial Differential Equation: A Partial Differential Equation (1) is said to semi-linear
PDE if it has the form

> a,(x)D“u+a,(D“"u,..., Du,u,x) =0, . (3)
|a| =k
Here, coefficient of highest order derivative is a function of x only.
For example: a(x)u,, +u,u, =0.

(c) Quasi-linear Partial Differential Equation: A Partial Differential Equation (1) is said to quasi PDE
if it has the form

> a,(D“,...,Du,u,x)DUu+a,(D“"u,..., Du,u,x) =0, o (4
o =k
Here, coefficient of highest order derivative are lower order derivative and function of x but not same

order derivatives.

For example: u u__+u_u, =0
XXX Xt

(d) Nonlinear Partial Differential Equation: A Partial Differential Equation is non-linear in the highest
order derivatives.

For example: u2u +u_u =0
XX Xt
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2.1.2 System of Partial Differential Equations

An expression of the form is said to be system of partial differential equations if it is represented by
F(DXa(x), DK la(x),...0T(x),T(x),x) =0 (xeU)

is called a kth order system of partial differential equations in u where
_ k k-1
F:RMN S RMN x..xRM xRMxy — RM

is given and u = (ul,uz,...,um) is the unknown function such that u:U — R™

For example:

HAU+(A+ p)divu=0 where u = (ul,uz,u?’)

Note: The classifications of system of partial differential equations are same as in case of a partial
differential equations.

2.1.3 Solution of PDE

An expression u which satisfies the given PDE (1) is called a solution of the Partial Differential Equation.

Well posed problem: A given problem in Partial Differential Equation is well posed (Hadaward) if it
satisfies

(i) existence

(ii) uniqueness

(iii) continuously depend on the data of given problem.
Classical Solution: If a solution of a given problem satisfies the above three conditions i.e., the solution
of k™ order partial differential equation exists, is unique and is at least k times differentiable, then the

solution is called classical solution. Solutions of Wave equation, Lalpace, and Heat equation etc., are
classical solutions.

Weak Solution: If a solution of a given problem exists and is unique but does not satisfy the conditions
of differentiability, such solution is called weak solution.

For Example: The gas conservation equation

u +F(u)=0
models a shock wave in particular situation. So solutions exists, is unique, but not continuous. Such
solution is known as weak solution.

Note: There are several physical phenomenon in which the problem has a unique solution, but does not
satisfy the condition of differentiability. In such cases, we cannot claim that we are not able to find the
solution rather such solutions are called weak solutions

2.2 Transport Equation
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Homogeneous Transport Equation

The simplest partial differential equation out of four important equations is the Transport equation with
constant coefficient

U,+b.Du=0 (D)

in R"x(0,00), where b=(0,b,,b;...,b,) is a fixed vector in R" and u:R" x[0,50) - R is the unknown
function u=u(x, t). Here X= (Xl, xn) € R" denotes a typical point in space and t > 0 is the time variable.

Theorem: Initial Value Problem

Consider the homogeneous transport equation

u,+b.Du=0 in R"x[0,) (D)
u=g on R" x{t =0} (2

where beR"andg:R" > R is known and Du=Du=(u, u, ) for the gradient of u with respect to

the spatial variablesX. The problem is to compute u(x,t) .
Solution:

Let (x,t) be any point in the R"x[0,). To solve equation (1) , we observe the L.H.S. of equation (1)
carefully, we find that it denotes the dot product of(uxl v Uy ul) with(b,...,b,,1) . So L.H.S. of equation
(1) tells that the derivative of u in the direction of (b,1) is zero inR"™" dimensional space. So, the line
through (x,t) in the direction of (b,1) is

X(s) =x+sb
, SeR .. (3)
t(s)=t+s
This line hits the plane T':= R" x{t = 0} at the point (x—th,0) when s=-t.
Define a parametric equation of line in the direction (b,l) is
z(s)=u(x+sh,t+s) .. (4

where s € R is the parameterand z:R —> R.
Then, differentiating (4) w.r.t. s, we get

2(s)=Du(x+sb,t+s)b+u,(x+sb,t+s)

0 (using (1))

= z(s) is a constant function of s on the line (3).



70 Partial Differential Equations
= U is constant on the line (4) through(x,t) with the direction(b,1) e R™.

and u(x—tb,0) = g(x—tb)
By virtue of given initial condition (2), we deduce that
u(x,t) =g(x—tbh) ...(5)for xeR"andt>0.
Hence, if we know the value of u at any point on each such line, we know its value everywhere in
R"x(0,o0) and it is given by equation (5).
Conversely, ifg e C', thenu = u(x,t) defined by (5) is indeed a solution of given initial value problem.
From (5), we find that

u, =—b.D(x—tb)
and

Du=Dg

Henceu, +b.Du = —b.Dg +b.Dg = 0 for (x ,t) in R" x[0,0) and for t=0 u(x,0)=g(x) onR"x{t =0}

Remark: If g is not C*, then there is obviously no C*solution of (1). But even in this case formula (5)
certainly provides a strong and in fact the only reasonable, candidate for a solution. We may thus

informally declare u(x,t)=g(x—tb)(xeR",t>0) to be a weak solution of given initial value problem

even should g not be C*. This all makes sense even if g and thus u are discontinuous. Such a notion, that
a non-smooth or even discontinuous function may sometimes solve a PDE will come up again later when
we study nonlinear transport phenomenon.

2.3 Non-homogenous Problem

Theorem: Consider the non—homogeneous initial value problem of transport equation

u +b.Du=f(xt) in R"x(0,) ..(D

u=g on R" x{t =0} -.(2)
where beR", g:R" >R, f:R"x[0,50) > R is known and Du=D,u =(uxl,...,uxn) for the gradient of
u with respect to the spatial variables x . Solve the equation for u=u(x,t) with initial condition (2).
Solution: Fix a point(x,t) e R™ as discussed before, the equation of line passing through (x,t) in the
direction of (b,1) is given by z(s) =u(x+sb,t+s), where s is the parameter.
Differentiating thisw. r. t.s
2(s)=f(x+sb,t+s)  (using (1))

Integrating w. r. t.Sfrom -t to O
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Iz‘(s)ds=_[ f (x+sb,t+s)ds

—t _

z(O)—z(—t):j f (x+sb,t+s)ds

0 0
t

Substitute t+s=y/ , ds=d i

Z(O)—Z(—t):j f (X+b((//—t),1//)dz//
u(x,t)—u(x—bt,0)=j f (x+b(s—t),s)ds (- replacing w by s )

u(x,t)=u(x-bt,0)+ | f (x+b(s—t),s)ds

O ey —+

u(xt)= g(x—bt)+j' f (x+b(x-t),s)ds (XE R",t 20)

It is the required solution of initial value problem for non-homogeneous transport equation.
2.4 Laplace’s Equation and its Fundamental Solution

We get the Laplace’s equation in several physical phenomenon such as irrotational flow of incompressible
fluid, diffusion problem etc. Let U = R"be a open set, x € Rand the unknown isu:U —»R, u=u(x)

then, the Laplace’s equation is defined as
Au=0 .. (D)
and Poisson’s equation
—-Au=f

where the function f :U — Ris given.

n
and also remember that the Laplacian of u isAu = ZUXi -

i=1
Definition: Harmonic function
AC? function u satisfying the Laplace’s equation Au =0 is called a harmonic function.
Theorem: Find the fundamental solution of the Laplace’s equation (1).

Solution: Probably, it is to be noted that the Laplace equation is invariant under rotation. So we attempt
to find a solution of Laplace’s equation (1) inU = R", having the form (radial solution)

u(x)=v(r), ..(2)
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where I =|X| = (Xl2 +ot X )% and v is to be selected (if possible) so that Au = 0 holds.

We note that
o 1,, Y X;
— =X +...+X 2% =— X#0
8Xi 2(X1 ”) ! r ( )
fori=1,2,...,n.

Thus, we have

X.
u =v'(r)-=,
=V
2 2
and U _v"(r)xi+v'(r) 1A
X X, (2 ro3
fori=1,...,n.

2 n

r

i=1
Hence Au =0 if and only if
v"+—1v':0
r
Ifv'=0, we deduce
e V"
log(|v1) =S
Integrating w. r. t. r,
logv'=—(n-1)logr+loga

where log a is a constant.

a

NOW, VvV ‘= )

r

Again integrating

alogr+b  (n=2)
v(r)=: a

rn—2

+b (n>3)
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where a and b are constants.
Therefore, if r >0, the solution of Laplace’s equation is
alog|x+b  (n=2)

u(x)= II%H) (n23)

Without loss of generality, we take b=0. To find b, we normalize the solution i.e.
[ u(x)x=1
Rn
So, the solution is
—ilog|x| (n=2)
2r
u(x)= 1 ...03)
n-2 (n 2 3)
n(n-2)a(n)x

for eachx e R",x#0 and a(n) is the volume of the unit ball in R".

We denote this solution by ®(x) and

Z_—ilog|x| (n=2)
O (x)= 1 .. (4

a0

defined forx e R",x # 0, is the fundamental solution of Laplace’s equation.

Remarks: 1. We conclude that the solution of Laplace’s equation Au = 0, ®(x) is harmonic forx = 0. So
the mapping x — ®(x), X # 0 is harmonic.

2. Shifting the origin to a new pointy, the Laplace’s equation remains unchanged. So CD(x - y) is harmonic

forx#y.If f :R" — R is harmonic, then®(x—y) f () is harmonic for eachy € R" and x = y .

3. If we take the sum of all different points y over R", then

j ®(x—y)f(y)dy isharmonic.
a

Since Au(x) = .[Axcb(x— y) f(y)dy

is not valid near the singularity x=Yy.
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We must proceed more carefully in calculating Au.

2.4.1 Fundamental Solution of Poission’s Equation

To solve the Poission equation is Au=—f, wherexeU < R", f :R"— R, U is an open set and unknown
function is u:U — R.

Solution: We know that x—>®(x—y)f(y) forx=y is harmonic for each point yeR",

and so is the sum of finitely many such expression constructed for different points y Consider the
convolution

u(x) = [ @(x—y)f(y)dy - (9)
Form equations (4) and (5), we have

—= [ logx-yD (e (n=2)

u) = 1 I f(y) dy (n=3) - ©
- 2amipy "

For simplicity, we assume that the function f used in Poission’s equation is twice continuously
differentiable. Now, we show that u(x) defined by equation (5) satisfies

(i) ueC?*(R")

(i) Au=—f inR".
Consequently, the function in (6) provided us with a formula for a solution of Poission’s equation.
Proof of (i):

Define u as,
u(x)= I@(x—y) f(y)dy
Rﬂ
By change of variable X—Yy =12

u(x) = jcp(x)f(x—z)dz = jcp(x)f(x—y)dy

By definition . U, .is

u(x+he;)—u(x) f(x+he)—f(x) .
: =Rjn<1>(y){ . }dy *)

where h = 0 is a real number e, e R", & = (0,0,...,0,1,0,...,0) with 1 in the i"" position.

Thus, on taking h — 0 in equation (*), we have
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OX
fori=12,3,...,n
Similarly,

ou(x) j (){af(x y)} —

au(x) - J' (y) {af (;X_ y) }dy (**)

OX;0X;
fori, j=1,2,...,n
As the expression on the right hand side of equation (***) is continuous in the variable x, we see that
ueC?*(R")
This proves (i).
Proof of (ii)

(ii) From part (i), we have

= J'HCD(y)AXf (x—y)dy

Since®(y) is singular at y = 0, so we include it in small ball B(0,¢), where & > 0

Then,
Au(x)= J O(y)A,f(x-y)dy+ _[ O (y)A,f(x—y)dy
B(0,¢) R"-B(0,¢)
=1+, ()
where
I, = I D(y)A, f(x—y)dy . (8)
B(0.&)
j @ (y)A, f(x—y)dy .. (9)
(0.)
Now,

_[ O(y)A, f(x—y)dy

B(O,g)

<elo 1l | o0l

S{c¢>;~2|log g (n=2)

ce? (n>3)
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R"-B(0,¢)
= [ o(y)a,f(x-y)dy [-.-iz__ AX:AV]
R"-B(0.¢) OX

Integrating by parts

- ] oo, tx-vay | oy Ty

R"-B(0,¢) B(0.2) ov

where v denoting the inward pointing unit normal along 6B(O,g).

=K, +L,

We take,
of (x—y)
L|= D(y) ds(y)
OB(IO,S) 81/
S”Df L(R") J‘ |(I)(y)| ds(y)
aB(0,¢)
L celloge| (n=2) (10)
Tl ce (n>3)
Now K, =- j Dd(y)D, f (x—y)dy
R"-B(0,%)

Integrating by parts

K, - _J(O )ACD(y) f (x—y)dy—asi )aq;(vy) f(x-y)ds(y)
- .[ aq;(y) f(x—y)ds(y) (since @ is harmonic)
|4
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ob oD oD
D® = —, —, ..,
¥) (ayl &, ayn]
Also ai)zi L 1,2
oy, oy, n(n—2)o¢(n)|y|n
_ -2y 1 8|y|: -1y
n(n-2)a() y"* & na()|y]"* Y]
_1 y
=— = y#0
ne(n)|y| =0
and V=ﬁ=_?y on B (0,¢)
So,
oo(y) B 1 B
» _v.DcD(y)_na(n)g — on dB(0,¢)
Now, we have
1
Kg=—WaB(J;£)f(X_y)d5(y)

ng—qs f(y)ds(y)—>—f(y) @ e—0

0B(x,&)
Combining equations (5) to (11) and lettinge — 0, we have

Au(x)=—f(x)

This completes the proof. Thus u(x) given by (5) is the solution of Poission’s equation.

2.4.2 Some Important Properties (in Polar coordinates)

(i) Ifdx:T [ (fds)dr

o(x,r)

Ol fdx—j( [ fds]dr
B(Xo.r) 0\ 8B(Xo.r)

... d
(iii) E{ j deJ_aBJo,r) fds

B(Xp,r)

. (11)
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2.5 Mean-value Theorem
Theorem: Mean-value formulas for Laplace’s equation

If U is a harmonic function. Then

u(x)= CJS uds = cJS udy .. (1)

aB(x.r) B(x.r)
for each ball B(x,r)cU.
OR
If u is harmonic function, prove that u equals to both the average of u over the sphere 8B(x, r)and the
average of u over the entire ball B(x,r) provided B(x,r)cU .

Proof: (Proof of Part I)
Set O(r):= cﬁ u(y)ds(y) .. 2)

aB(x,r)

Shifting the integral to unit ball, if z is an arbitrary point of unit ball then

O(r):= 95 u(x+rz)ds(z)

oB(x,r)
Then
O'(r)= <JS Du(x+rz).zds(z)

And consequently, using Green’s formulas, we have

®'(r)= CJB Du(y).?ds(y)

oB(x,r)

= gS Du(y).vds(y), where v is unit outward normal to dB(x,r).

(ﬁ Au(y)dy =0 (‘.‘AUIO on B(X,r))

Hence @ is constant and



Laplace Equation and its solution 79

@(r):lEQ@(t):[EgaB%ﬁ)u(y)ds(y):u(x) ..(3)

From (2) and (3), we have

u(x)= Sﬁ u(y)ds(y) o (4

aB(x,r)
(Proof of Part I1)
Using coarea formula, we have

_[ udy_j[ _[ uds}dt
B(x.r) 0\ aB(xt)

= <j> udy ... 5

From (4) and (5), we have

u(x) = 4) uds = 95 udy

B(x.r) B(x.r)

Hence proved.

Converse of Mean- value Theorem

Theorem: If ueC?(U) satisfies the mean value formula

u(x)= <f> )uds

OB(x,r
for each ball B(x,r)cU, then u is harmonic.
Proof: Suppose that u is not harmonic, so Au # 0. Therefore there exists a ball B(x, r)cU such that
Au >0 within B(x,r).
But then for @, we know that

0=0'(r)= qS Au(y)dy >0

(xr)

which is a contradiction. Hence u is harmonic in U .

r
Ng
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2.6 Properties of Harmonic Functions

Here, we present an interesting deduction about the harmonic function, all based upon the mean-value
formula by assuming the following properties that U < R" is open and bounded.

2.6.1 Strong Maximum Principle, Uniqueness

Theorem: Let u e C? (U )mC(U) is harmonic withinU..

0] Then maxu = maxu
U oU

(if) Furthermore, if U is connected and there exists a point X, € U such that
u(x,)=maxu,
ROV
then u is constant withinU .

Assertion (i) is the maximum principle for Laplace’s equation and (ii) is the strong maximum principle.

Proof: (ii) Suppose there exist a point x, €U such that

u(xo):mugxu=M .. (1)

Then for O<r < dist(xo,au ) , the mean value property implies

M = u(xo) = B(cxjir)udy

1
B a(mr” -[

B(Xo,r)
M
< d
a(nr” I y

B(%.r)

<

M
Equality holds only if u=M within B(x,,r). So we have, u(y)=M for ally € B(x,,r). To show that
this result holds for the set U .

Consider the set
X ={xeUJu(x)=M}
We prove that X is both open and closed.

X is closed since if x is the limit point of set X, then 3 a sequence {x,}in X such that {x,} — x
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Since uis continuous so {u(x, )} —u(x).
So u(x)=M
=xeX

= X isclosed.

To show that X is open, let x € X, there exists a ball B(x, r) U such that
u(x)= <]5 udy
B(x,r)

So xeB(x,r)c X.

Hence X is open.

But U is connected. The only set which is both open and closed in U is itself U.So U = X..

Hence u(x)=M VxeU Sou isconstantin U .
(i) Using above result, we have u(y)<u(x,) for some y and suppose X, €U .

Since U is harmonic, so by mean value theorem, there exists a ball B(X,,r)cU such that

u(x,)= <j> uds(y)

9B(%o.r)

M <

1
ramr O] s

<[u(y)|

Maximum value is less than |u(y)| which is a contradiction.
Hence X, €0U .

Remarks: 1. If U is connected and u e C*(U ) \C (U ) satisfies
Au=0inU
u=g on ouU

where g >0.

Then U is positive everywhere in U if g is positive somewhere on oU .

2. An important application of maximum modulus principle is establishing the uniqueness of solutions to
certain boundary value problem for poission’s equation.
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Theorem: (Uniqueness)

Let geC(AU), feC(U). Then there exists at most one solution ueC*(U)~C(U) of the boundary

value problem
—Au=f inU
u=g on ouU
Proof: Let U and U be two solutions of given boundary value problem, then
—Au=f inU
u=g on oU
and
~Au=finU
a:g on oU
Let w=+(u—0)
Aw=0 inU
w=0 on oU

= W is harmonic in U and W attains maximum value on boundary which is zero. If U is connected
then W is constant. So w=0 in U

Hence u=U in U .

2.6.2 Regularity

In this property, we prove that if u e C?is harmonic, then necessarilyu e C*. Thus harmonic functions
are automatically infinitely differentiable.

Theorem: If u e C(U )satisfies the mean value property for each ball B(x,r)cU, then
ueC”(U)

Proof: Define a set u_= {xeU|dist(x,0U)>s}and 7 be astandard mollifier.
Set ugzng*u in U, .. (D

We first show that u® eCOO(Ug).
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Fix xeU_, where X=X\ %, X, ).

Let h be very small such that x+hei eug.
ué(x)=n_*u

Jn(x_y)u(y)dy .. ()

—iJU(y)dy )

Now using (2) and (3), we have

u® (x-+he;)-u? (x) _iuj U(X—y;hei}n(x;y) -

h g"

Taking the limitas h —» 0

ou’® 1 J

&

exists.

. o { an ou
Since neC”(R"). So o~

Similarly D%u€ exists for each multi-index « .

So ugecw(u )
&

We now show that u=u® on U,.

Let X€U, then
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== I”(Lj u(y)ds dr  (using the cor. of coarea formula)
0 € oB(x,r)

(Lj ne(n)r"“u(x)dr  (by Mean value formula)
&
)

=u(x) J’ 1. (y)dy (by definition)

So ué =u in U_ andso u eCOO(Ug) foreach ¢ >0.

Note: The above property holds for each ¢ > 0. It may happen u may not be smooth or even continuous
upto oU .

2.6.3 Local Estimate for Harmonic Functions

Theorem: Suppose U is harmonic in U . Then

0 ‘Dau(xo) Sr:ﬁ”“”Ll(B(xo,r)) - (D)

For each ball B(X,,I) cU and each multiindex & of order |a|=k .

2n+1 kk
(ii) Co=—t~ , C ()

a(m) " a(n)

Proof: We prove this by induction.

(k=1,..) .. (2

For k=0, =0.
1
To show ‘u(xo)‘ < ”u”Ll(B(x, r))

rna(n)

By mean value theorem

“(Xo)= § u(y)dy foreach ball B(X,r)cU

B(xy:")
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1
‘U (XO )‘ < WHUHE(B(XOJ))

C

0

‘D u(%, )‘ < r_;?”u”Ll(B(Xovr))
Hence the result.

For k=1, To show

C
|Du(x0)|srn—11||u

L(B(%.r))

where C =

Consider

)

(By Gauss- Green Theorem)

85
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fo) -

By equation (3)

u(x)| <

2n
nr

- ||u||L1(B[x,gD

o

Hence

e (o)) S atai() Mit{ape))
From (4) and (5)

2n+1n

T ()

u, (%)<

:‘D“u(xo)‘ <

Hence result is true for k=1.

1 Jul
ujl,1
N+l L(B(XO’r))

Assume that result is true for each multiindex of order less than or equal to k-1 for all balls in U . Fix
B(X,,r) U and & be multiindex with |a| =k

D%u I(DﬂU)X for some i=(1’2’3!"'!n)

where | 8| =k —1. Consider the ball B(xo 8
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Du(%,)| =‘(Dﬂu)

X

<Koy
r

- r ... (6
{eefs ) (©)
r
If XE@B(XO,E) then
B(x,%rjc B(x,,r)cU
L k-1
By assumption, in the ball B(X,Trj

2 nk(l:lﬂm o) )
a(n)(k r)

‘Dﬁu(xo)‘ <

From (6) and (7)

k —l jn+k1 ||u||L1(B(x0,r))
r

(2n+lnk)k

< a(n) K ”u“Ll(B(XO'r))

Since,

l K n<1 k>2
> 2(k—1) forall k=

Hence result holds for |a|=k .
2.6.4 Liouville’s Theorem

We see that there are no nontrivial bounded harmonic functions on all of R"

Theorem: Suppose u:R" — R is harmonic and bounded. Then U is constant.

Proof: LetX, € R",r >0, then by mean value theorem
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= J. uvds ( By Guass Green’s theorem)

1 (2Y)
|u(x)|£a(n)( j (B(x.r))
Hence
o 0= 2 (2] bl
2n+l
i )II e
2n+l
||U () —>0asr—0
Hence Du=0.

So U is constant.

Theorem: Representation Formula
Let f €CZ(R"),n>3. Then any bounded solution of —au= f in R’ (1)

of the form
u(x):j®(x—y)f(y)dy+c (XER”)
Rn
For some constant ¢ and ®(x) is the solution of Laplace’s equation.
Proof: Since ®(x)—>0 as [¥ — for n>3

= @(x) is bounded.
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Let U be a solution of equation (1) which is represented as

u= _[d)(x—y) f(y)dy

and it is bounded.

Since f € C*(R")and ®(x)is bounded forn >3 LetT be another bounded solution of equation (1)

Definew=u-u

Aw =0
and Wis bounded (--- difference of two bounded functions)
By Liouville’s theorem
W =constant
oru—u=-C
=>Uu=u+cC

This is the required result.

Note: For n=2, @ (x) = 2_—1|0g|x| is unbounded as |X| —>o0and so may be
T
_[@(x—y) f(y)dy
R2

2.6.5 Analytically

Theorem: If U is harmonic in U then u is analytic inU .
Proof: Suppose that X, be any point in U . Firstly, we show that Ucan be represented by a convergent

power series in some neighbourhood of X; .

Let y:%dist(xo,é’u)

Then M=

1
a(n)rn ”u“Ll(B(xO,Zr)) <o - (1)

for each x € B(X,,r), B(x,r)=B(X,,2r)cU

By estimates of derivatives

C

‘D“u(Xo )‘ < rnlik ||U||,_1(B(XO,,))
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X _(2“*lnk)kf e
where ¢, TN or each|a|=
2n+lnk
So HD“U(X) B(%.r)) (05( ) nJ)rk ” ||L1 %o.))

w(z2fi

By Sterling formula

1
k+=
lim -1
k—0 k!ek N \/Eﬂ'
— k¥ <ckleX, where c is constant.
Hence,
| < |
. (3)
for some constant ¢ and all multi indices & .

Furthermore, the Multinomial theorem implies

|t

:(1+...+1)k = ..(4)

o
where |a!< n“g!

Using (4) and (3) in (2)

D“u(x,)

o]
2n+1r.]2e
<Mc o!
r
Taylor series foru at X; is

ZM(X_XO)a

p al

The sum taken over all multiindices.

n+l .\l
; <M 2n ce“nlg !
L"(B(%.r)) r

- (@)
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We claim that this power series converges, provided

|X—Xo|<%
2" n%e

To verify this, let us compute for each N

The remainder term is

2, DU+t (x=%))(x=%)"

Ry (X)= >,

N a!

For some 0 <t <1, tdepending on x.

"inze )" ro )
‘RN(X)‘SCMZ[ r ](zmznse]

l N
<cM (—j
HZ;' 2n

gﬂ_m as N -0
2N

= Series is converges.

So u(x) is analytic in neighbourhood of X; .

But X, is arbitrary point of U .

So u is analyticin U .

2.6.6 Harnack’s Inequality

This inequality shows that the values of non-negative harmonic functions within open connected subset

of U , are comparable.

Theorem: For each connected open set V — U , 3 a positive constant ¢, depending only on V , such that

supu <cinfu
V; \

For all nonnegative harmonic functions U in U .

Thus in particular
1
Eu(y)SU(x) <cu(y)

Proof: Let r :%dist(v,au)

vX,y eV

(1)
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Choose X,y €V,[x—y|<r. Then

B(x.2r) B(v.r)
=2—1nB(y’r)udz =2—1nu(y)
= 2"u(x)>u(y) .. (2
Interchanging the role of x and y
2"u(y)=u(x) .. 3
Combining (2) and (3)
2“u(y)2u(x)22—1nu(y) X,y eV

Since V is connected, V' is compact, so vV can be covered by a chain of finite number of balls {Bi}i:1

such that B, B, #0 for i j each of radius %

Therefore,
U(X)ZZ%N u(y) X,y eV
u(x) Z%u(y)

Similarly,
cu(y)=u(x)

So, %u(y)SU(x)scu(y) X,y eV

2.7 Green’s Function:

Suppose that U = R" is open, bounded and 6U is C'. We introduced general representation formula for
the solution of Poisson’s equation

—Au=f InU .. (D)
subjected to the prescribed boundary condition
u=g on ou ... 2
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Theorem: (Derivative of Green’s function)

Derive the Green’s function of equation (1) under the initial condition (2).

Proof: Let u e C? (U) is an arbitrary function and fix xeU , choose ¢ >0 so small that B(x,&) cU
and apply Green’s formula on the region V, =U — B(X, 8) tou ( y) and CD(y — X) :

Then, we have

Vf[U(V)ACD(Y—X)—CD(V—X)AU(y)]dy

- [[u 2200ty 2D sy

where v denoting the outer unit normal vector on 0V, . Also A®(x—y)=0 forx=y.

Then
—I@(y—x)Au(y)dy
o0 (y-x) aU(y)}
= u(y)———=-d(y-x ds(y ..(3
8U+6J;(x,a){ ( ) v ( ) ov ( ) ()
Now
au(y)
S @000 <Pl [0y fes()
< "l—o(¢) >0 ase&—0 .. (4
Also
J a2 as(y)= [ u(y0 2 as(y)
B(x,%) aB(0,5)
Now
__ 1y
Dd(y)= na(n)|y|" ,y=0
y _—Y oD
T s e st
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1

=———— [ u(y)ds(y)

na(n)e B(x.e)

<f> u(y)ds(y)—u(x) a &—>0 ... (5

B(x,5)

Using (4) and (5) in equation (3) and making ¢ — 0

—J(I)(y—x)Aydy:J;{u(y)%‘/_x)—@(y—x)s—i}ds(yﬁu(x)
(y#x)
Thus
)= {0002 P as(y)- [oy-xauey o

This identity is valid for any point x U and for any function ueC?(U)and it gives the solution of

problem defined by equation (1) and (2) provided that u(y),s_u are known on the boundary 6U and the
12

value of Au in U . But S_t is unknown to us along the boundary. Therefore, we have to eliminate g_l:
to find the solution. For it, we define a correction term formula ¢=¢"(y) (for fixed x) given by the
solution of

Ap"=0 inu

¢ =d(y—x) on oU (D)

Let us apply Green’s formula once more,
0" ou
A X _ XA d = = _ == d
l![U(y) ¢ —¢*Au(y)]dy a{[U(y) ¢ av} s

Then we have

—£¢XAu(y)dy:i{u(y)%¢:—¢xS—i}dx ... (8)
Adding equation (6) and (8)
O O(y—x)—¢"
u(x)=—[[@(y=x)-¢" (y)]Aau(y)dy— | it (;(3 ’ (y)]U(y)dy . (9)

Now we define Green’s function for the region U as
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G(xy)=@(y-x)-¢"(y) (x,yeU,x=y) ... (10)
From equation (9) and (10)

oG (X,
U(X)=—IG(X,V)AU(y)dy—IU(y)%ds(x) .. (1)
U ou
oG (X,
where (—Vy) =D,G(x,Y). v(Y)is the outer normal derivative of G with respect to the variable y. Also

FfOU

we observe that equation (11) is independent o 5
1%

Hence the boundary value problem given by equation (1) and (2) can be solved in term of Green’s function
and solution is given by equation (11) is known as Representation formula for Green’s

Function.

Note: Fix xeU . Then regarding G as a function of y, we may symbolically write
-AG=4, inU
G=0on oU
where O, denoting the Dirac Delta function.
2.7.1 Symmetry of Green’s Function
Theorem: Show that for all x,y eU,x=y, G(X,y) is symmetricie. G(x,y)=G(y,X).

Proof: For fix x,yeU,x=y

Write

v(z)=G(x,z),w(z)=G(y,z) (zeV)
Then

Av(z)=0(z#x),Aw(z)=0(z#Y)
and w=v=0 on oU.

Applying Green’s formula on V =U —[B (x,e)UB(y, g)] for sufficiently small & >0 yields.

ow ov ov ow
as({,g)(vg_ngdsu = j (WE_VEde(y) .. (D

v denoting the inward pointing unit vector field on dB(x,&)UdB(y,¢).

Now W is smooth near X, so
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Jos

<ce" >0 as €—>0 .. 2

I éﬂvds
1%

< ” DW”BB(X,&)
0B(x,¢)

We know that V(z)=®(z—-x)—¢"(z), where ¢" is smooth in U .Thus

lim ﬂst=lim ai)(x—z)w(z)ds=w(x)

0 0
o aB(x,&) ¢ i aB(x,) v

Now we have

Similarly,

Therefore from equation (1) , we have

w(x)=v(y)
=G(xy)=G(y,x)

Hence proved.

2.7.2 Green’s Function for a Half Space

Definition: If X=(X,,...,X,4, X, ) € R}, its reflection in the plane OR] is the point

K= (X, Xy 10 X3 ) -
Definition: Green’s function for the half space R is
G(x,y)=@(y-x)-(y-X) (x,yeRf,x;ty)
Example: Solve the boundary value problem
Au=0 in R
u=g on OR!

with the help of Green’s function.
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Solution: LetX,yeR!,X#Y.

By definition, G(X,y)=®(y—X)-¢"(y)

We choose the corrector term
#*(y)=2(y-%)

where % is reflection of X w.r.t. OR! .

Clearly A" =0 jn R]

Now
D (y-%)= = =3
n(n-2)a(n)ly-¥
oD v Yi—X%
_y_x_ ;
8y1( ) ne(n)|y —%|
Fo_ 1 ()
o na(n)ly-%" a(n)ly-"
R 1
7 = +(Yo +X,)

Adding A®(y-X)=0 on R} |y—x|=(y-X)

So  O(y-%)=0(y-x)
Hence both conditions are satisfied.

So, Green’s function

G(x,y)=®(y—-x)-DP(y-X) iswell defined.

So, using the representation formula

=0-— _[ (x,y)ds(y)

(1)
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G, \_pao. G
o (xy)=DG= ayn(x,y)
oG _op, v 0D
oy, oy, ) Ty, V)
_ Yo — X, _ Yo + X,
na(n)ly-x" na(n)ly-x
2X, "My vl = v_¢
e (onR?, [y x| =]y - x])
u(x)= 2 9(y) ds(y) (xeRD)

nee(n) = |x — y|”
This is the required solution and is known as Poisson’s formula.
The function
2X 1

K(x,Vy)= n RY, OR!
(X Y) na(n)|x_y|” (Xe ye )

is Poisson’s kernel for R .
2.7.3 Green’s Function for a Ball
Definition: If xeR"—{0}, the point X:% is called the point dual to x with respect to 6B(0,1)
Definition:  Green’s function for the wnit ball is G(X,y)=®(y—x)-®(|]x(y-X))
(x,yeB(0,1),x=y).
Example: Solve the boundary value problem

Au=0 in B(0,1)

u=g on 0B(0,1)

with the help of Green’s function.
Solution: Fix any point x€B”(0,1) and y = x
The Green’s function is given by
G(xy)=®(y-x)-D(y)

We choose ¢ (y)=@(]¥(y-%))
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where % dual of X w. r.t. 6B(0,1)

As we know @ (y—Xx) is harmonic. So @ (y—X) is also harmonic for y = x.. Similarly |x*" @ (y - %)

is harmonic for y # X.

Or ®(|x|(y—X)) is harmonic for y = x
so, Ag”=0in B(0,1)

On 0B(0,1):

But

=[x-yf
So. 4(x) = ((y~R) = B(y-).
Hence both conditions of ¢” (y) are satisfied.
So
G(x,y)=®(y-x)-@(|]x|(y—x%)) iswell defined.

Hence solution of given problem is given by

u()=- | g(y)5ds(y)

Now on 6B(0,1)

oG oG : ,
—— ="V, v being the unit normal.

ov oy
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oG y 0G
=17 ~ Ji Yy =1
G X — Y yI|X| —X

_ yi |X|2 _yl
ne (n)|x-y]|
oG (2-147)

woy e (n)x—y["
This is the required solution.
2.7.4 Energy Methods

Theorem: (Uniqueness)

There exists at most one solution u e C? (U) of the boundary value problem

—Au=f inU
u=g on ou
where U is open, bounded and oU is C*.
Proof: Let U be another solution of given problem.
Let w=u-u then Aw=0 in U
w=0 on oU

Consider

_[WAwdx = I w(wxi) dx
U U

X

Integrating by parts

=—J.WX,WXVdX+ f w, wvds , v being the unit normal
ou

=—[|Dwf* dx+0
U
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=|Dw[*=0 in U
=Dw=0 in U
= W= constant in U
But w=0 in oU
Hence w=0 in U
=>u=Uu
Hence uniqueness of solution.

Dirichlet’s Principle: Let us demonstrate that a solution of the boundary value problem for Poisson’s
equation can be characterized as the minimize of an appropriate functional.

Thus, we define the energy functional

| [W]zj%mwr ~ widx

U

w belonging to the admissible set A= {W eC’(U)|w=g onouU }

Theorem: Let ueC? (U) be a solution of Poisson’s equation. Then

I[u]=rvrv|€i£1 I [w] ..o (D
Conversely, if u e A satisfies (1) then u is a solution of boundary value problem
~Au=f inU
u=g onouU .. (2

Proof: Let we A and u be a solution of Poisson’s equation. So

—Au=f in U

:>O:.|.(—Au— f)(u—w)dx

U

:-LJ;Au(u—W)dx—j f(u—w)dx

U
Integrating by parts
0= _[ Du.D(u—w)dx - j (u—w) Du.vds—j f (u—w)dx
U ou

U

:I(Du.Du— fu)dx—O—.[(Du.DW— fw) dx
U U
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:>l_[(|Du|2 — fu)dx =£(DU.DW— fw)dx

= _[(| Du|2 -~ fu) dx < _[B| Du|2 + %| DW|2 -~ fw} dx  (By Cauchy-Schwartz’s inequality)

U

1 1
So I[E|Du|2— fu}dxsj‘[ijf— fw}dx

Hu]< 1]w]
Since ue A, So

[ [u]=min1[w]

weA

Conversely, suppose that I[u]=minI[w]
weA
Forany veCy(U), define i(z)=1[u+zv] , zeR
So i(7) attains minimum for z =0
i'(r)=0 for £=0
i(7)= E|Du+rDv|2—(u+rv)f}dx
U
1 2 2
:J’{E(|Du| +7°|Dv| )+rDuDv—(u+rv)f}dx
U
i'(O):“Du.Dv—Vf]dx
U

Integration by parts
0= —.[vAudx + j Du.vds — Ivfdx
U ou

0= [[~Au— f]vdx [vecy(U)]

This is true for each functionv e C;" (U ).

SO Au=—-f in U.

So u is a solution of Poisson’s equation.





